Relative and Absolute Perturbation Bounds for Weighted Polar Decomposition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative and Absolute Perturbation Bounds for Weighted Polar Decomposition

Let Cm×n, Cm×n r , C m ≥ , C m > , and In denote the set of m × n complex matrices, subset of Cm×n consisting of matrices with rank r, set of the Hermitian nonnegative definite matrices of order m, subset of C ≥ consisting of positive-definite matrices and n × n unit matrix, respectively. Without specification, we always assume that m > n >max{r, s} and the given weight matrices M ∈ C > ,N ∈ C ...

متن کامل

Perturbation Bounds for the Polar Decomposition

Let M n (F) denote the space of matrices over the eld F. Given A2 M n (F) deene jAj (A A) 1=2 and U(A) AjAj ?1 assuming A is nonsingular. Let 1 (A) 2 (A) n (A) 0 denote the ordered singular values of A. We obtain majorization results relating the singular values of U(A + A) ? U(A) and those of A and A. In particular we show that if A; A2 M n (R) and 1 ((A) < n (A) then for any unitarily invaria...

متن کامل

Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds

We show that three well-known perturbation bounds for matrix eigenvalues imply relative bounds: the Bauer-Fike and Hooman-Wielandt theorems for diagonalisable matrices, and Weyl's theorem for Hermitian matrices. As a consequence, relative perturbation bounds are not necessarily stronger than absolute bounds; and the conditioning of an eigenvalue in the relative sense is the same as in the absol...

متن کامل

Multiplicative Perturbation Bounds for Weighted Unitary Polar Factor

The multiplicative perturbation bounds for weighted unitary polar factor are considered in the weighted unitary invariant norm, weighted spectral norm, and weighted Frobenius norm in this paper. As the special cases, new bounds for subunitary and unitary polar factor are also derived. These new bounds improve the corresponding results published recently to some extent. Mathematics subject class...

متن کامل

Relative Perturbation Bounds for Positive Polar Factors of Graded Matrices

Let B be an m × n (m ≥ n) complex (or real) matrix. It is known that there is a unique polar decomposition B = QH, where Q∗Q = I, the n× n identity matrix, and H is positive definite, provided that B has full column rank. If B is perturbed to B̃, how do the polar factors Q and H change? This question has been investigated quite extensively, but most work so far has been on how the perturbation c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2012

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2012/219025